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Abstract 

 

The price of derivatives (and hence of structured products) can be calculated as the 
discounted value of expected future payoffs, assuming standard hypotheses on frictionless 
and complete markets and on the type of stochastic processes for the price of the 
underlying. However, the probabilities used in the pricing process do not represent “real” 
probabilities of future events, because they are based on the assumption that market 
participants are risk-neutral. This paper reviews the relevant mathematical finance 
literature, and clarifies that the risk-neutrality hypothesis is acceptable for pricing, but not 
to forecast the future value of an asset. Therefore, we argue that regulatory initiatives that 
mandate intermediaries to give retail investors information on the probability that, at a 
future date, the value of a derivative will be higher or lower than a given threshold (so-
called “probability scenarios”) should explicitly reference probabilities that take into 
account the risk premium (so-called “real-world” probabilities). We also argue that, though 
probability scenarios may look appealing to foster investor protection, their practical 
implementation, if based on the right economic approach, raises significant regulatory and 
enforcement problems. 
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1. Introduction 

In principle, an appealing way to enhance the regulation on the transparency of derivatives 
and structured products would be that of mandating the disclosure of the probability that 
their value at some future dates exceeds a given threshold (for example, the issue price 
increased by the risk-free rate). In the rest of the paper we will term this approach as 
"probability scenarios". 

This work clarifies that it would be misleading to calculate probability scenarios using the 
probabilities underlying the pricing process, because these probabilities assume that market 
participants are risk-neutral (so-called “risk-neutral” probabilities). In reviewing the relevant 
mathematical finance literature, we argue that this approach is economically grounded for 
pricing purposes, while it is highly questionable to estimate future values of derivatives. 

In the case of equity derivatives, we can assume that the risk premium is zero because, as 
originally highlighted by the seminal work of Black and Scholes on option pricing, the 
derivative’s price should be independent of investors’ risk aversion, as long as the derivative 
is replicable with the underlying asset. However, the situation is completely different when 
we want to make inference on the future value of derivatives (i.e. for risk management 
purposes). In this case, in order to simulate the future value of the underlying, it does not 
make sense to assume that stock prices grow at the risk-less rate, as is instead acceptable for 
pricing. The growth rate should be equal to the risk-less rate plus the equity risk premium. 

In the case of interest-rate derivatives, a zero risk premium is equivalent to assuming that 
forward rates are unbiased predictors of future rates (this is the so-called “pure expectations 
theory” for the term structure of interest rates). This means that investors require no 
compensation for the risk of unpredicted changes in future rates when buying long-terms 
bonds.    

In summary, we argue that risk-neutral probabilities are acceptable for pricing, but not to 
forecast the future value of an asset.      

Hence, probability scenarios should be calculated assuming that investors demand a risk 
premium to hold risky assets, such as shares or long-term bonds (so-called “real-world” 
probabilities). 

The difference between risk-neutral and real-world probability is obviously well known in 
the academic debate. In this work we review the relevant mathematical finance literature in 
order to make clear the economics underlying our argument. In section 2 we discuss the 
issue for equity derivatives, while in the next section we move on to interest-rate derivatives 
(IRD); boxes contain the more technical material, and can be skipped by more policy-
oriented readers. In the final section, we argue that, even if mandatory regulation on 
probability scenarios were correctly based on real-world probabilities, there would still be 
considerable regulatory and enforcement problems. 
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2. Equity derivatives  

In the following §2.1, we briefly review the risk-neutral pricing theory. We rely on a standard 
illustration that can be found in any advanced text of stochastic calculus, trying to make clear 
the economics behind the mathematical modeling, which sometime is overlooked in the 
policy debate. The limits of the risk-neutral approach for probability scenarios will be then 
discussed at the technical level in §2.2. 

2.1 The risk-neutral approach in the pricing of equity derivatives 

Stochastic models developed in the mathematical finance literature allow to simulate the 
dynamics of equity prices and hence of future payoffs of any equity derivative or a structured 
product. Hence, it is possible to calculate the probability distribution of the value of a 
derivative at a certain future date T. The expected value in T is then discounted, and this 
gives the “fair value” or “theoretical price” of the derivative. 

The key issue here is to understand the hypotheses behind the stochastic models used to 
simulate future stock prices. One possible model to simulate stock prices is the so-called 
"geometric Brownian motion", i.e. a stochastic differential equation that describes the 
change in share price S in an infinitesimal time interval as: 

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝜇𝜇𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑆𝑆𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡         (1) 

where 𝑑𝑑𝑆𝑆𝑡𝑡 is the price change, μ is the so-called drift of the process (whose economic 
interpretation is the expected return on equity, i.e. the risk-less rate plus the equity risk 
premium), σ is the expected volatility of the share price (also known as the “diffusion” 
parameter of the process), 𝑊𝑊𝑡𝑡  is a random variable, so that ΔW in 𝛥𝛥𝛥𝛥 is equal to 𝜀𝜀 ∗ √𝛥𝛥𝛥𝛥 , 
where ε is a standard normal distribution (i.e. zero mean and unit variance), and such that 
the values of ΔW in any two intervals 𝛥𝛥𝛥𝛥 are independent. 

Equation (1) basically assumes that equity returns (𝑑𝑑𝑆𝑆𝑡𝑡/𝑆𝑆𝑡𝑡) have a normal distribution with 
average 𝜇𝜇𝛥𝛥𝛥𝛥 and standard deviation 𝜎𝜎𝛥𝛥𝛥𝛥, and that returns are independent over time (and 
hence assumes the informational efficiency of markets). Equation (1), therefore, models 
equity returns (𝑑𝑑𝑆𝑆𝑡𝑡/𝑆𝑆𝑡𝑡) as the sum of a deterministic component proportional to the value of 
the parameter 𝜇𝜇 and of a random component 𝜎𝜎𝜎𝜎𝑊𝑊𝑡𝑡 which generates random 
increases/decreases that are, however, i.i.d.. 

The crucial point in using the equation (1) to simulate future values of stock prices is the 
estimate of μ. In fact, while the volatility σ is normally set to the implied volatility quoted in 
option markets, μ needs an explicit assumption on the equity risk premium, which is 
obviously a quite complex task and the economic literature on the subject is huge. Though 
the issue of surveying such literature is beyond the scope of this paper (but we will come 
back on this at the end of §2.2), it is quite clear that different models can be used and results 
can differ substantially (even when the same model is estimated over different dataset). 

However, it can be shown that (for pricing only), under standard conditions of complete and 
frictionless markets with no arbitrage opportunities, future share prices can be simulated 
using the following equation: 
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𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑟𝑟𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑆𝑆𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡        (2) 

where the expected return on equity μ (i.e. the equity premium plus the risk-free rate) is 
replaced by the risk-free rate r. This result has obviously a great importance because it 
postulates that derivative prices are independent of investors' risk aversion and the original 
intuition comes from the work of the early seventies of the last century by the economists 
Robert Merton, Myron Scholes and Fischer Black, which was worth them the Nobel prize in 
1997.  

The economic intuition is, in fact, very simple and can be summarized as follows: if the 
payoff of a derivative is replicable with a portfolio composed by the underlying asset and by a 
risk-free security (so-called “replicating portfolio”), then the price of the derivative and that 
of the replicating portfolio must be the same, otherwise profitable arbitrages would arise. 
The no-arbitrage principle leads directly to the conclusion that the price of the derivative 
does not depend on the risk aversion of market participants, and hence on the risk premium 
required to hold shares. 

In Box 1 we present a simple example to show how derivatives can be priced without making 
any hypotheses on the risk premium, which also serves as a preliminary technical 
introduction to risk-neutral probabilities. 

 

Box 1 – Risk-neutral pricing in a simplified case with 2 possible states 
of the world  
 
Consider a call option that expires in t+1. The value in t+1 of the option (C) 
depends on the share price (S) in t+1, which has a binomial structure. In the 
binomial model, it is assumed that trades occur at discrete instants t, t+1, t+2, … 
and that the price S of the underlying share follows a binomial multiplicative 
stochastic process. This means that at the end of each period the price of the 
underlying share is given by its starting value multiplied by a factor a or b, with a 
and b being real positive values, known and constant in all periods. For 
simplicity, the values at the time t+1 are summed up in the following framework: 

 
 
Therefore the equity return in the generic period [t+j, t+j+1] assumes the value a 
with probability p and the value b with probability 1-p. 
 
It is assumed that a > b, so that aS indicates returns higher than in bS. It is 
supposed that the share does not pay dividends and that the usual hypotheses of 
perfect markets hold (short sales allowed and the market is frictionless; agents 
are price-takers and profit-maximizing; risk-free arbitrage is absent). It is also 
supposed that future risk-free rates 

 

 aS with probability p Ca=max{aS-K, 0} with probability p 

S C 

 bS with probability 1-p                              Cb=max{bS-K, 0} with probability 1-p  
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are constant and known in t: 
 

i(t+j, t+j+1)=i. 
 

Therefore, m=1+i is the riskless value of an annuity in the generic period [t+j, 
t+j+1]. It can be shown that in order to avoid profitable risk-free arbitrage it must 
be a > m > b. 

 
Suppose we make a portfolio composed of Δ shares and an investment of B euro 
at the risk-free rate i. The value of this portfolio will be: 
 

 
 
Cox, Ross and Rubinstein (1979) have shown that it is possible to calibrate the 
weight Δ of the share component and the weight B of the bond component of the 
portfolio in order to exactly replicate the payoff of the call option, so that it 
assumes the value Ca if the market rises and Cb  if the market falls, i.e.: 

�
𝑎𝑎𝑎𝑎∆ +𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑎𝑎
𝑏𝑏𝑏𝑏∆ +𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑏𝑏

     [A.1] 

The solutions of the system of two linear equations are: 

∆= 𝐶𝐶𝑎𝑎−𝐶𝐶𝑏𝑏
(𝑎𝑎−𝑏𝑏)𝑆𝑆

           [A.2] 

and 

𝐵𝐵 = 𝑎𝑎𝐶𝐶𝑏𝑏−𝑏𝑏𝐶𝐶𝑎𝑎
(𝑎𝑎−𝑏𝑏)𝑚𝑚

.     [A.3] 

To avoid arbitrage, the price of the call option in t must therefore be equal to the 
price of the replicating portfolio in t, i.e.: 

𝐶𝐶 = 𝑆𝑆∆ + 𝐵𝐵.     [A.4] 

 
This last equation represents an option pricing formula that it is totally 
independent from the subjective expectations on p, and therefore it implies that 
even if market participants have different opinions on the probabilities of future 
events and different risk tolerance, they still must agree on the same price for the 
call option. 
 
In fact, by replacing the expressions shown for Δ and B, the price C can be 
expressed as: 
 

 aSΔ+mB with probability p 

SΔ+B 

  bSΔ+mB with probability 1-p 
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𝐶𝐶 = 𝐶𝐶𝑎𝑎−𝐶𝐶𝑏𝑏
𝑎𝑎−𝑏𝑏

+ 𝑎𝑎𝐶𝐶𝑏𝑏−𝑏𝑏𝐶𝐶𝑎𝑎
(𝑎𝑎−𝑏𝑏)𝑚𝑚

= 1
𝑚𝑚
�𝑚𝑚−𝑏𝑏
𝑎𝑎−𝑏𝑏

𝐶𝐶𝑎𝑎 + 𝑎𝑎−𝑚𝑚
𝑎𝑎−𝑏𝑏

𝐶𝐶𝑏𝑏�;   [A.5] 

If we define: 

𝑞𝑞 = 𝑚𝑚−𝑏𝑏
𝑎𝑎−𝑏𝑏

,                              [A.6] 

(A.5) can be written as: 

𝐶𝐶 = 1
𝑚𝑚

[𝑞𝑞𝐶𝐶𝑎𝑎 + (1 − 𝑞𝑞)𝐶𝐶𝑏𝑏].    [A.7] 

The option price can now be interpreted as the discounted expected value that the 
option may have in two future states of the world weighted with a new probability 
measure q e 1-q. These probabilities are known as risk-neutral, because they do 
not depend on the subjective probability p of the occurrence of the possible states 
of the world, nor on the risk aversion of market participants. 
 
Hence, under q and 1-q, the value of a derivative instrument can be expressed not 
only as the arbitrage-free price, but also as the discounted expected payoff at 
maturity. In fact, it can be demonstrated that: 
 

𝐶𝐶 = 𝑆𝑆∆ + 𝐵𝐵 =
1
𝑚𝑚

[𝑞𝑞𝐶𝐶𝑎𝑎 + (1 − 𝑞𝑞)𝐶𝐶𝑏𝑏] 
  
This is the so-called equivalent martingale measure, as defined in Harrison and 
Kreps (1979), which states that by transforming p into q we redistribute the 
probability mass so that the no-arbitrage price of a financial asset (left-side part 
of the equation) is equal to its future discounted value at the risk-free rate (right-
side part of the equation)4. 
 
We can check all this with a numeric example. Suppose in t=0 S0 =10 and that in 
t=1 Sa is equal to 14 (a=1.4) and Sb to 6 (b=0.6); suppose also that the risk-less 
rate i is equal to 10% and the strike price is 10; the no-arbitrage price of the call 
option is determined as follows: 
 

a) we first determine the value in t=1 of the call option in the two states of 
the world: 

 
Ca = max (0; Sa-K) = max (0; 14-10) = 4 

 
Cb = max (0; Sb-K) = max (0 6-10) = 0 

 
b) then by using equations [A.2] [A.3] [A.4] we have the no-arbitrage price: 

 
∆= 𝐶𝐶𝑎𝑎−𝐶𝐶𝑏𝑏

(𝑎𝑎−𝑏𝑏)𝑆𝑆
= 4−0

14−6
= 0.50                                      [A.8] 

4  The demonstration that the formula of the expected value is martingale equivalent to the no-arbitrage price is contained 
in Baxter and Rennie (1996). 
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𝐵𝐵 = 𝑎𝑎𝐶𝐶𝑏𝑏−𝑏𝑏𝐶𝐶𝑎𝑎

(𝑎𝑎−𝑏𝑏)𝑚𝑚
= 1.4∗0−0.6∗4

(1.4−0.6)1.1
= −2.72                             [A.9] 

 
𝐶𝐶0 = 𝑆𝑆0∆+ 𝐵𝐵0 = 10 ∗ 0.50 − 2.72 = 2.29                     [A.10] 

 
We can see that in t=1 the replicating portfolio will have a value of either SaΔ+B1 

(14*0.50-3=4) or SbΔ+B1 (6*0.50-3=0), exactly like the call option. We can also 
check that the no arbitrage price is equal to the discounted expected value of the 
payoffs according to the new “probability measure” q defined in equation A.6: 
 

𝑞𝑞 = 𝑚𝑚−𝑏𝑏
𝑎𝑎−𝑏𝑏

= 1.1−0.6
1.4−0.6

= 0.625 ≅ 0.63                                  [A.6 bis] 
 

𝐶𝐶 =
1
𝑚𝑚

[𝑞𝑞𝐶𝐶𝑎𝑎 + (1 − 𝑞𝑞)𝐶𝐶𝑏𝑏] =
1

1.1
[0.63 ∗ 4 + (1 − 0.63) ∗ 0] = 2.29 

 
 
The above results can be extended to any derivative with payoff  𝑌𝑌(𝑡𝑡 + 1) =
𝑓𝑓[𝑆𝑆(𝑡𝑡 + 1)] where f is the contractually specified function that links the value of 
the derivative to the value of the underlying asset S. The conditions to be satisfied 
for the stock-bond portfolio to replicate the payoff produced by the derivative are 
expressed by the linear system in the unknowns Δ and B: 
 

�
𝑎𝑎𝑎𝑎∆ + 𝑚𝑚𝑚𝑚 = 𝑌𝑌𝑎𝑎
𝑏𝑏𝑏𝑏∆ + 𝑚𝑚𝑚𝑚 = 𝑌𝑌𝑏𝑏

 

 
The no-arbitrage rule requires that the price Y in t be equal to the value in t of the 
replicating portfolio, thus giving the pricing formula: 
 

𝑌𝑌 = 𝑆𝑆∆ + 𝐵𝐵.                                                   [A.11] 
 
It is possible to show that using the risk-neutral probability measure q: 

𝑞𝑞 = 𝑚𝑚−𝑏𝑏
𝑎𝑎−𝑏𝑏

,      
 
the pricing equation can be written as: 
 

𝑌𝑌 = 1
𝑚𝑚

[𝑞𝑞𝑌𝑌𝑎𝑎 + (1 − 𝑞𝑞)𝑌𝑌𝑏𝑏].                                      [A.12] 
 
The pricing formula [A.12] has a great relevance because it does not depend on 
the subjective (real-world) probability p and it does not require any hypothesis on 
market participants' risk aversion. 
 
We now discuss how this result relates to the classical expected utility hypothesis, 
which assumes risk averse agents.  
 
If the representative agent is profit maximizing and risk-averse, with a monotonic 
and concave utility function u(x), the criteria to value an uncertain future payoff 
Y(T) is based on discounting back at the risk-free rate i the certainty equivalent: 
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𝑌𝑌�(𝑡𝑡 + 1) = 𝑢𝑢−1�𝐸𝐸𝑡𝑡�𝑢𝑢�𝑌𝑌(𝑡𝑡 + 1)��� = 𝑢𝑢−1[𝑝𝑝𝑝𝑝(𝑌𝑌𝑎𝑎) + (1 − 𝑝𝑝)𝑢𝑢(𝑌𝑌𝑏𝑏)]. 
 
With this approach, we would therefore have: 
 

𝑌𝑌 = 1
𝑚𝑚
𝑢𝑢−1[𝑝𝑝𝑝𝑝(𝑌𝑌𝑎𝑎) + (1 − 𝑝𝑝)𝑢𝑢(𝑌𝑌𝑏𝑏)], 

or, with compact notation: 

𝑌𝑌(𝑡𝑡) = 𝑌𝑌�(𝑡𝑡+1)
𝑚𝑚

.      [A.13] 
  
Given risk-aversion, the certainty equivalent 𝑌𝑌�(𝑡𝑡 + 1) cannot be greater than the 
expected value of Y(t+1) and therefore: 
 

𝑌𝑌�(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑡𝑡[𝑌𝑌(𝑡𝑡 + 1)], 
or: 
 

𝑢𝑢−1[𝑝𝑝𝑝𝑝(𝑌𝑌𝑎𝑎) + (1 − 𝑝𝑝)𝑢𝑢(𝑌𝑌𝑏𝑏)] ≤ 𝑝𝑝𝑌𝑌𝑎𝑎 + (1 − 𝑝𝑝)𝑌𝑌𝑏𝑏. 
 

This inequality is a direct consequence of the concavity of the u(x). If one 
excludes the trivial case 𝑌𝑌𝑎𝑎 = 𝑌𝑌𝑏𝑏 (corresponding to a deterministic payoff) a 
certainty equivalent and the expected value of the lottery can be the same only if 
the utility function is linear; i.e. only a risk-neutral agent will price the derivative 
according to the rule: 
 

𝑌𝑌(𝑡𝑡) = 𝐸𝐸𝑡𝑡[𝑌𝑌(𝑡𝑡+1)]
𝑚𝑚

.                                                  [A.14] 
 
Since it must be that a>m>b in order to avoid risk-less arbitrages, the coefficient 
q in equation [A.12] is bounded between 0 and 1, and it can therefore be 
interpreted as a pseudo probability. If one accepts this interpretation, the 
expression in square brackets in  [A.12] can be interpreted as the expect value in t 
of the uncertain payoff Y(T),  based on the pseudo-probabilities q and 1-q; i.e. it 
can be represented as: 

𝐸𝐸𝑡𝑡
𝑄𝑄[𝑌𝑌(𝑡𝑡 + 1)] = 𝑞𝑞𝑌𝑌𝑎𝑎 + (1 − 𝑞𝑞)𝑌𝑌𝑏𝑏                             [A.15] 

where 𝐸𝐸𝑡𝑡
𝑄𝑄 represents the expectation calculated in t according to the probability q. 

The price of the derivative in t can therefore be expressed in the form: 

𝑌𝑌(𝑡𝑡) = 𝐸𝐸𝑡𝑡
𝑄𝑄[𝑌𝑌(𝑡𝑡+1)]

𝑚𝑚
                                                      [A.16] 

 
Hence, [A.16] and [A.14] show that the pricing formula based on the no-arbitrage 
rule is equivalent to the pricing criteria of a risk-neutral agent5. Of course, the key 
point here is that [A.16] does not imply that market participants are actually risk-
neutral. The real meaning of the adjustment for the risk produced by the 
probability q is evident if one compares [A.13] with [A.16]: the risk-neutral 

5  For a formal but accessible demonstration, see Baxter and Rennie (1996). 
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expectation Et
Q[Y(t + 1)] plays the role of a certainty equivalent, but the risk 

adjustment is not obtained by using the utility function. Hence, the shape of the 
risk-neutral probabilities, and therefore the distortion of the weights in the 
calculation of the expected value, will be the same for all derivatives with the 
same underlying, and will depend only on the dynamics of the underlying S and 
the risk-free rate. 
 
It can be concluded, therefore, that if there is agreement between agents on the 
parameters a and b that specify the dynamics of the process S, a derivative on S 
must have the same price for all agents, regardless of the subjective probability p 
and of the individual utility function u(x). In short, the pricing method according 
to the no-arbitrage principle ensures that any risk-averse agents will value the 
derivative "as if" he were risk-neutral. 
 
 

***Extension to a multi-period framework*** 
 
Using the concept of martingale6 it is possible to extend CRR model to the 
valuation of a generic derivative on S in a multi-period binomial model. Using the 
no-arbitrage rule previously discussed, it is possible to show that the price of a 
generic derivative with payoff 𝑌𝑌(𝑡𝑡 + 𝑛𝑛) = 𝑓𝑓[𝑆𝑆(𝑡𝑡 + 𝑛𝑛)] (for which early exercise is 
not allowed) is: 
 
 

𝑌𝑌 = 1
𝑚𝑚𝑛𝑛 �∑

𝑛𝑛!
𝑘𝑘!(𝑛𝑛−𝑘𝑘)

𝑛𝑛
𝑘𝑘=0 𝑞𝑞𝑘𝑘(1− 𝑞𝑞)𝑛𝑛−𝑘𝑘𝑓𝑓(𝑎𝑎𝑘𝑘𝑏𝑏𝑛𝑛−𝑘𝑘𝑆𝑆)� ,               [A.17] 

 
since 𝑓𝑓(𝑎𝑎𝑘𝑘𝑏𝑏𝑛𝑛−𝑘𝑘𝑆𝑆) is the value assumed by Y(t+n) after k increases and n-k 
decreases in the price S. The price of the derivative can also be represented in the 
usual form of discounted risk-neutral expectation: 
 

𝑌𝑌(𝑡𝑡) = 1
(1+𝑖𝑖)𝑛𝑛

𝐸𝐸𝑡𝑡
𝑄𝑄[𝑌𝑌(𝑡𝑡 + 𝑛𝑛)] .                                [A.18] 

 
It is possible to show that same pricing formula holds at any time 𝜃𝜃 ≤ 𝑇𝑇, so that: 
 

𝑌𝑌(𝜃𝜃) = 1
(1+𝑖𝑖)𝜏𝜏−𝜃𝜃

𝐸𝐸𝜃𝜃
𝑄𝑄[𝑌𝑌(𝜏𝜏)],     𝑡𝑡 ≤  𝜃𝜃 ≤  𝜏𝜏 ≤ 𝑇𝑇.                  [A.19] 

 
If we define the discounted pricing process: 
 

𝑌𝑌∗(𝜃𝜃) = 𝑌𝑌(𝜃𝜃)
(1+𝑖𝑖)𝜃𝜃−𝑡𝑡

                                             [A.20] 

we have: 
 

𝑌𝑌∗(𝜃𝜃) = 𝐸𝐸𝜃𝜃
𝑄𝑄[𝑌𝑌∗(𝜃𝜃 + 1)].                                    [A.21] 

6  Starting from the succession of a random variables Xn, it is possible to define the stochastic process in the discrete time 
𝑌𝑌𝑛𝑛 = 𝑌𝑌0 + ∑ 𝑋𝑋𝑘𝑘𝑛𝑛

𝑘𝑘=1  . The process Yn is a martingale if 𝐸𝐸𝑛𝑛−1(𝑌𝑌𝑛𝑛) = 𝑌𝑌𝑛𝑛−1. Since Yn-1 is known at the time n-1 then one can write 
𝐸𝐸𝑛𝑛−1(𝑌𝑌𝑛𝑛 − 𝑌𝑌𝑛𝑛−1) = 0. Therefore a martingale can be intuitively featured as a process whose increases represent the payoff 
of a fair game.  
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In fact, from [A.20] we have: 
 

𝐸𝐸𝜃𝜃
𝑄𝑄[𝑌𝑌∗(𝜃𝜃 + 1)] = 𝐸𝐸𝜃𝜃

𝑄𝑄 � 𝑌𝑌(𝜃𝜃+1)
(1+𝑖𝑖)𝜃𝜃+1−𝑡𝑡

� = 1
(1+𝑖𝑖)𝜃𝜃−𝑡𝑡

𝐸𝐸𝜃𝜃
𝑄𝑄 �𝑌𝑌(𝜃𝜃+1)

(1+𝑖𝑖)
�; 

 
and from [A.19] one also has: 
 

1
(1 + 𝑖𝑖)𝜃𝜃−𝑡𝑡

𝐸𝐸𝜃𝜃
𝑄𝑄 �
𝑌𝑌(𝜃𝜃 + 1)

1 + 𝑖𝑖 � =
𝑌𝑌(𝜃𝜃)

(1 + 𝑖𝑖)𝜃𝜃−𝑡𝑡
= 𝑌𝑌𝜃𝜃∗. 

 
[A.21] therefore states that the discounted pricing process of the derivative is a 
martingale when using risk-neutral probability measure. More generally, it can 
be shown that under the risk-neutral probability measure the discounted value of 
a derivative is a martingale: 
 

𝑌𝑌𝑛𝑛
(1 + 𝑖𝑖)𝑛𝑛

= 𝐸𝐸𝑛𝑛
𝑄𝑄 �

𝑌𝑌𝑛𝑛+1
(1 + 𝑖𝑖)𝑛𝑛+1�

,𝑛𝑛 = 0,1, … ,𝑁𝑁 − 1. 

 
which gives the so-called “First Fundamental Asset Pricing Theorem”, according 
to which: 
 

𝐸𝐸𝑄𝑄 𝑌𝑌𝑛𝑛
(1+𝑖𝑖)𝑛𝑛

= 𝑌𝑌0,𝑛𝑛 = 0,1, … ,𝑁𝑁                                   [A.22] 

 
This means that future increases of the discounted pricing process have always a 
zero expected value under the risk-neutral probability measure7.  

 

Box 1 has discussed in a simplified way the economic ideas behind the seminal work of 
Robert Merton, Myron Scholes and Fischer Black, pointing to their mathematical 
generalization, whereby it is possible to show that under the risk-neutral measure the 
discounted value of the expected payoff of a derivative has a martingale behavior. This 
means that the risk-neutral measure guarantees that the derivative price satisfies a no-
arbitrage condition.  

When there is no closed-end formula for derivative pricing, one needs to use simulations 
techniques. Here the problem is technically different, or in any case of a more general nature 
than that faced in the work of Black and Scholes (1973), since we need to demonstrate 
mathematically that it is possible to use the equation (2) instead of the equation (1) to 
simulate future payoffs. In fact, the work of Robert Merton, Myron Scholes and Fischer Black 
was later generalized from the mathematical viewpoint, showing that, under the mentioned 
conditions of complete and frictionless markets, it is possible to calculate the price of a 
derivative as the discounted expected value of future payoffs using a risk-neutral probability 
measure, rather than real probabilities. In practical terms, this means that it possible to use 
equation (2), instead of equation (1), to simulate future payoffs, and hence that it is possible 

7  For a more complete discussion, see Baxter and Rennie (1996) and Shreve (2004).  
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to get rid of the big problem of the equity premium estimation. Equation (2) just needs 
estimates of the risk-free rate r and of the volatility σ, which can easily be taken from market 
quotes.  

The fundamental concepts at the basis of this result are outlined below, while a formal 
analytical illustration given in Box 2.  

As previously shown, the price at time t of a derivative product that generates uncertain 
payoffs 𝑋𝑋𝑇𝑇 at time T is equal to the discounted expected value of future payoffs, i.e. 𝑃𝑃𝑡𝑡 =
𝐸𝐸𝑃𝑃[𝑋𝑋𝑇𝑇] ∗ 𝐾𝐾(𝑡𝑡,𝑇𝑇), where 𝐸𝐸𝑃𝑃 indicates the expected value of the payoffs 𝑋𝑋𝑇𝑇 under the 
probability measure P, while K(t,T) is the discounting factor (i.e. the price of a zero-coupon 
bond).  

It can be demonstrated that, under the assumption of complete markets with no-arbitrage, 

the same price is obtained using a risk-neutral probability measure Q, i.e. 𝑃𝑃𝑡𝑡 = 𝐸𝐸𝑄𝑄 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑋𝑋𝑇𝑇� ∗

𝐾𝐾(𝑡𝑡,𝑇𝑇), where 𝐸𝐸𝑄𝑄 indicates the expected value under the risk-neutral probability Q, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the 

so-called Radon–Nikodyn derivative and K(t,T) is again the discounting factor. Applying 
certain general results of probability theory it can be shown that the change from a real-
world probability measure (P) to a risk-neutral probability measure (Q) can be obtained by 
just changing the drift of the stochastic process (and not of the volatility) of the underlying. 
These mathematical results formally show that it is possible to calculate the price of a 
derivative under the risk-neutral probability measure by just changing the drift of the 
stochastic process of the underlying. In short, these results allow, to use the equation (2), 
instead of the equation (1), to price equity derivatives. 

More precisely, the Radon–Nikodyn derivative and the Girsanov theorem define the 
technical steps to change the probability measure, from real-world P to risk-neutral 
probability Q, when the stochastic process for the underlying is a geometric Brownian 
motion, so that the two probability measures become “equivalent” for the purposes of 
calculating expected values. However, this does not mean that for the same set of events the 
two probability measures assume equal values, nor that they have equal moments other than 
the expected value. 

In summary, the mathematical results illustrated above do nothing more than generalize and 
formalize the original ideas of Black and Scholes, showing that, under complete markets with 
no arbitrage, it is possible to use for pricing purposes (only) stochastic models that do not 
factor in the equity premium. 

Box 2 (based on material from standard textbooks of advanced stochastic calculus) gives a 
formal proof that equation (2) represents a change of probability measure in respect to 
equation (1), i.e. a change from a real-world probability measure (P) to a risk-neutral 
measure (Q), and that this change of measure ensures equivalence for pricing purposes (i.e. 
in terms of expected value).  
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Box 2 – Change of the probability measure from real-world to risk-
neutral when the stochastic process is a geometric Brownian motion 
 
We define P and Q as two probability measures out of a space of finite events Ω 
and we will assume that P(w) > 0 and Q(w) > 0 for every 𝑤𝑤 ∈  Ω. If we defined 
the random variable   
 

𝑍𝑍(𝑤𝑤) = 𝑄𝑄(𝑤𝑤)
𝑃𝑃(𝑤𝑤)

                                                             [B.1] 

 
it is possible to show that: 
 

(i) 𝑃𝑃(𝑍𝑍 > 0) = 1; 
(ii) 𝐸𝐸𝑃𝑃𝑍𝑍 = 1; 
(iii) for every random variable Y we will have 𝐸𝐸𝑄𝑄𝑌𝑌 = 𝐸𝐸𝑃𝑃[𝑍𝑍𝑍𝑍], i.e. the 

expected value of the random variable Y under the probability 
measure Q is equal to the expected value under the probability P of the 
random variable Y transformed by the random variable Z. 

 
Proof of (iii) can easily be found: 
 
𝐸𝐸𝑄𝑄𝑌𝑌 = ∑ 𝑌𝑌(𝑤𝑤)𝑄𝑄(𝑤𝑤) = ∑ 𝑌𝑌(𝑤𝑤)𝑄𝑄(𝑤𝑤)

𝑃𝑃(𝑤𝑤)𝑃𝑃(𝑤𝑤) = ∑ 𝑌𝑌(𝑤𝑤)𝑍𝑍(𝑤𝑤)𝑃𝑃(𝑤𝑤) = 𝐸𝐸𝑃𝑃[𝑍𝑍𝑍𝑍]𝑤𝑤∈Ω𝑤𝑤∈Ω𝑤𝑤∈Ω . 
 
In a continuum of events the change of probability measure from the real-world P 
to the risk-neutral Q is similarly obtained by defining a space of probabilities 
(Ω,𝐹𝐹,𝑃𝑃) and assuming that Z is a non-negative variable so that 𝐸𝐸𝑃𝑃𝑍𝑍 = 1. 
Therefore, for every 𝐴𝐴 ∈ 𝐹𝐹 we will have 
 

𝑄𝑄(𝐴𝐴) = ∫ 𝑍𝑍(𝑤𝑤)𝑑𝑑𝑑𝑑(𝑤𝑤) 
𝐴𝐴                                                    [B.2] 

 
i.e. Q is a new probability measure such that: 
 

 
𝐸𝐸𝑄𝑄𝑌𝑌 = 𝐸𝐸𝑃𝑃[𝑍𝑍𝑍𝑍]                                                       [B.3] 

 
where the random variable Z represents the Radon-Nikodym derivative of Q in 
respect of P, i.e.: 
 

𝑍𝑍 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 .                                                               [B.4] 
 
 
Let us now introduce the Girsanov theorem. 
 
Girsanov Theorem: W(t), with 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, is a Brownian movement defined on a 
space (Ω,𝐹𝐹,𝑃𝑃) and 𝜃𝜃(𝑡𝑡), with 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, is a generic stochastic process. If we 
define: 
 

𝑍𝑍(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−∫ 𝜃𝜃(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑢𝑢) − 1
2 ∫ 𝜃𝜃2(𝑢𝑢)𝑑𝑑𝑑𝑑𝑡𝑡

𝑜𝑜
𝑡𝑡
𝑜𝑜 �                                  [B.5] 
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𝑊𝑊� (𝑡𝑡) = 𝑊𝑊(𝑡𝑡) + ∫ 𝜃𝜃(𝑢𝑢)𝑑𝑑𝑑𝑑𝑡𝑡
𝑜𝑜                                                 [B.6] 

 
the result will be that, under the risk-neutral probability measure defined in the 
equation [B.2], the stochastic process 𝑊𝑊� (𝑡𝑡) is also a Brownian movement. 
 
Now we take the geometric Brownian motion: 
 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝜇𝜇(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡), 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                             [B.7] 
 
where the drift 𝜇𝜇 represents the expected return on equity and 𝜎𝜎 its volatility. 
 
[B.7] can be written in an equivalent form as: 
 

𝑆𝑆(𝑡𝑡) = 𝑆𝑆(0)𝑒𝑒𝑒𝑒𝑒𝑒 �∫ 𝜎𝜎(𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠) + ∫ �𝛼𝛼(𝑠𝑠)− 1
2
𝜎𝜎2(𝑠𝑠)�𝑡𝑡

0
𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑�.                       [B.8] 

  
Let us suppose, in addition, that we have a process which describes the interest 
rate R(t). We can then write the discounting process as: 
 

𝐷𝐷(𝑡𝑡) = 𝑒𝑒−∫ 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0                                                         [B.9] 

 
and by applying the Itô-Doeblim formula, we will have: 
 

𝑑𝑑𝑑𝑑(𝑡𝑡) = −𝑅𝑅(𝑡𝑡)𝐷𝐷(𝑡𝑡)𝑑𝑑𝑑𝑑.                                                 [B.10] 
 
The discounted price process will therefore be: 
 

𝐷𝐷(𝑡𝑡)𝑆𝑆(𝑡𝑡) = 𝑆𝑆(0)𝑒𝑒𝑒𝑒𝑒𝑒 �� 𝜎𝜎(𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠) + � �𝛼𝛼(𝑠𝑠) − 𝑅𝑅(𝑠𝑠) −
1
2
𝜎𝜎2(𝑠𝑠)� 𝑑𝑑𝑑𝑑

𝑡𝑡

0

𝑡𝑡

𝑜𝑜
� 

 
and its differential is: 
 

𝑑𝑑�𝐷𝐷(𝑡𝑡)𝑆𝑆(𝑡𝑡)� = �𝛼𝛼(𝑡𝑡) − 𝑅𝑅(𝑡𝑡)�𝐷𝐷(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑡𝑡)𝐷𝐷(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡)
=  𝜎𝜎(𝑡𝑡)𝐷𝐷(𝑡𝑡)𝑆𝑆(𝑡𝑡)[𝜃𝜃(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑(𝑡𝑡)] 

[B.11] 
 
where we have defined the market price of the risk as: 
 

𝜃𝜃(𝑡𝑡) = 𝛼𝛼(𝑡𝑡)−𝑅𝑅(𝑡𝑡)
𝜎𝜎(𝑡𝑡)

. 

 
The pricing problem at the basis of the original idea of Black and Scholes 
discussed in the text consists in changing to a new probability measure Q that 
excludes any arbitrage possibility. In order to do this it is sufficient to find the 
only martingale probability measure Q equivalent to P for the pricing of a 
contingent claim (Harrison and Kreps, 1978).  
 
We now apply to the Girsanov theorem, which establishes that under the 
probability measure Q the stochastic process 𝑊𝑊� (𝑡𝑡) defined in [B.6] is Brownian 
motion. We can then rewrite [B.11] in the terms of the stochastic process 𝑊𝑊� (𝑡𝑡) as: 
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𝑑𝑑(𝐷𝐷(𝑡𝑡)𝑆𝑆(𝑡𝑡)) = 𝜎𝜎(𝑡𝑡)𝐷𝐷(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑑𝑑𝑊𝑊� (𝑡𝑡).                                       [B.12] 

 
The probability measure underlying the equation [B.12] is, as mentioned, the 
risk-neutral probability measure equivalent to the real-world probability measure 
that makes the discounted price process D(t)S(t) a martingale. 
 
The original non-discounted process S(t) has therefore an expected return equal 
to the risk-free rate under the risk-neutral probability measure Q. In fact, it can 
easily be verified that, replacing 
 

𝑑𝑑𝑑𝑑(𝑡𝑡) = −𝜃𝜃(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑊𝑊� (𝑡𝑡) [obtained from B.6] 
 

in [B.7] gives: 
 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑅𝑅(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑑𝑑𝑊𝑊� (𝑡𝑡).                                     [B.13] 
 
 

Hence, the change of probability measure has allowed us to set the equity 
premium to zero and hence to replace 𝜇𝜇 with the risk-free rate r. Since r can be 
uniquely defined,  Q represents the only equivalent martingale measure for S. 
This obviously does not mean that the real drift of equity returns is the risk-less 
rate. The new probability measure Q is just a mathematical expedient to make the 
pricing problem tractable and come up with a price that does not depend on risk 
aversion as in the Black and Scholes models.  

2.2 Why risk-neutral probabilities cannot be used to forecast the future value 
of derivatives  

In the previous section we have shown that, under standard assumptions of frictionless, 
complete and efficient markets, it is possible to price derivatives as the discounted value of 
expected future payoffs assuming that the equity premium is zero. 
 
It has been shown that this approach is acceptable for pricing purposes only, because, under 
the risk-neutral probability measure, the discounted value of expected future payoffs has a 
martingale behavior that satisfies no-arbitrage conditions, and this allows to ignore the risk 
premium. If instead we are not taking discounted values, risk-neutral probabilities cannot be 
used to estimate the (future) value of derivatives, because these probabilities would not 
guarantee a no-arbitrage condition.  
 
This means that we cannot use risk-neutral probability to value derivatives at future dates. 
Hence, probability scenarios on future values need to be calculated using probabilities that 
factor in the equity premium (so-called “real-world” probabilities), because the 
representative agent is likely to be risk-averse. In other words, in order to calculate 
probability scenarios for future values, it is necessary to simulate payoffs using equation (1), 
while equation (2) is instead valid for pricing only. 



ESMA Working Paper No. 3, 2014  17 

 
Probability scenarios are essentially risk management tools widely used by financial 
intermediaries. The so-called value-at-risk (VaR) is just an example of a particular way to 
exploit the information given by probability scenarios. In fact, VaR gives the expected loss 
corresponding to a given percentile of the probability distribution of the value of the 
financial product at a certain future date. Therefore, VaR calculation requires the estimation 
of the entire probability distribution of the value of a financial product at a given future date, 
exactly like the in the probability scenarios. Box 3 gives an example that shows how the 
application of VaR models requires real-world probabilities.  

 

Box 3 – VaR calculation and real-world probabilities 
 
Suppose we have a structured product whose price P depends in a non-linear way 
from the price S of a share. The change in the price P can be estimated applying 
the Taylor-rule approximation: 
 

𝛥𝛥𝛥𝛥 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 1
2
𝑆𝑆2𝛾𝛾(𝛥𝛥𝛥𝛥)2  

 
where δ and γ are respectively the first and second derivative of the price of the 
derivative product with respect to S, while 𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥

𝑆𝑆
 is the stock return. ΔP does 

not have a known distribution, but if we assume that 𝛥𝛥𝛥𝛥 has a normal distribution 
(if S follows a geometric Brownian motion), VaR can be calculated extracting 
values of 𝛥𝛥𝛥𝛥 from a normal distribution with given mean and the variance. If the 
mean is estimated on historical data, it will include an estimate of the risk 
premium, and this means that the probability distribution of ΔP is not risk-
neutral. 
 
When, especially for regulatory purposes, VaR is used to evaluate risks over very 
short time periods (typically from one to very few days), it is obviously possible to 
set the risk premium to zero without making any significant errors, and thus VaR 
will reflect just volatility. This approach, however, is not correct, as shown above, 
when risks are valued over longer time periods.   

 

The issue of the pitfalls in risk-neutral distributions is well known in finance literature. For 
example, Grundy (1991) underlines that risk-neutral probabilities are not “true” real-world 
probabilities, and by comparing the two distributions he derives an estimate of the investors' 
risk aversion. Similarly other papers try to correct risk-neutral probabilities derived from 
option prices in order to obtain real-world probabilities, which give a more accurate 
representation of the expectations of risk averse investors (Liu et al., 2007 and Humphreys 
and Noss, 2012). More explicitly, Bliss and Panigirtzoglou (2004) clearly state the problem: 
“Unfortunately, theory also tells us that the PDFs [probability distribution functions – Ed. 
note] estimated from option prices are risk-neutral. If the representative investor who 
determines option prices is not risk-neutral, these PDFs need not correspond to the 



ESMA Working Paper No. 3, 2014  18 

representative investor’s (i.e. the market’s) actual forecast of the future distribution of 
underlying asset values”.  

The simple example in Box 4 shows more formally, using the example in Box 1, why risk 
aversion makes risk-neutral probabilities different from real-world probabilities. 

Box 4 – The difference between risk-neutral and real-world 
probabilities in a framework with two 2 possible states of the world 
and risk-averse agents 
 
 
Let us take the model of Box 1 where a derivative price Y depends on the 
underlying asset S, which in turn can assume only 2 values corresponding to 2 
different states of the world a and b.  We will now analyze the utility that a 
representative risk-averse agent (i.e. with a concave utility function) assigns to 
the value of the underlying share at the maturity date of the derivative T. The 
agent maximizes the utility of his final wealth U(S) at time T. The representative 
agent maximizes the expected wealth on the basis of real-world probabilities p 
and 1-p associated with the 2 states of the world, i.e.: 
 

max𝑝𝑝 𝑈𝑈(𝑆𝑆𝑎𝑎) + (1 − 𝑝𝑝)𝑈𝑈(𝑆𝑆𝑏𝑏).                                         [E.1] 

 
However, the maximization process must take into account the restriction that, 
for the no-arbitrage argument discussed in Box 1, the price S of the underlying 
share at the future date T, i.e. the price of the forward derivative contract on the 
underlying share, must be equal to the risk-neutral price, i.e. (𝑞𝑞𝑆𝑆𝑎𝑎 + (1 − 𝑞𝑞)𝑆𝑆𝑏𝑏). 
The current price of the share, i.e. the agent's initial wealth, must therefore 
necessarily be equal to the expected discounted value of the payoffs of the 
forward contract in T weighed for the risk neutral probabilities, i.e. as seen in Box 
1: 
 

𝑒𝑒−𝑟𝑟𝑟𝑟(𝑞𝑞𝑆𝑆𝑎𝑎 + (1 − 𝑞𝑞)𝑆𝑆𝑏𝑏) = 𝑆𝑆0                                           [E.2] 

 
Hence, to solve the constrained maximization problem we set the Lagrange 
function and solve for first order condition, as follows: 
 

𝐿𝐿 = 𝑝𝑝𝑝𝑝(𝑆𝑆𝑎𝑎) + (1 − 𝑝𝑝)𝑈𝑈(𝑆𝑆𝑏𝑏) − 𝜆𝜆(𝑒𝑒−𝑟𝑟𝑟𝑟(𝑞𝑞𝑆𝑆𝑎𝑎 + (1 − 𝑞𝑞)𝑆𝑆𝑏𝑏) − 𝑆𝑆0) 

⎩
⎪
⎨

⎪
⎧ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑆𝑆𝑎𝑎
=
𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆𝑎𝑎)
𝜕𝜕𝑆𝑆𝑎𝑎

− 𝜆𝜆𝜆𝜆𝑒𝑒−𝑟𝑟𝑟𝑟 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆𝑏𝑏

=
(1 − 𝑝𝑝)𝜕𝜕𝜕𝜕(𝑆𝑆𝑏𝑏)

𝜕𝜕𝑆𝑆𝑏𝑏
− 𝜆𝜆(1 − 𝑞𝑞)𝑒𝑒−𝑟𝑟𝑟𝑟 = 0
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after some computations, we obtain: 
 

𝑝𝑝 =

𝜕𝜕𝜕𝜕(𝑆𝑆𝑏𝑏)
𝜕𝜕𝑆𝑆𝑏𝑏

𝜕𝜕𝜕𝜕(𝑆𝑆𝑎𝑎)
𝜕𝜕𝑆𝑆𝑎𝑎

�1
𝑞𝑞 − 1� + 𝜕𝜕𝜕𝜕(𝑆𝑆𝑏𝑏)

𝜕𝜕𝑆𝑆𝑏𝑏

 

This expression shows how real-world probabilities and risk-neutral probabilities 
are linked through the utility function of economic agents. With a risk-neutral 
utility function, such as a linear one, real-world probabilities are equal to risk-
neutral probabilities. For example, if: 

𝑈𝑈(𝑆𝑆) = 𝛼𝛼(𝑆𝑆𝑎𝑎 + 𝑆𝑆𝑏𝑏) 

𝑝𝑝 =
𝛼𝛼

𝛼𝛼
𝑞𝑞 − 𝛼𝛼 + 𝛼𝛼

= 𝑞𝑞 

With a risk-averse utility function, such as a logarithmic function, real-world 
probabilities are different from risk-neutral probabilities. In fact, if: 

𝑈𝑈(𝑆𝑆) = 𝑙𝑙𝑙𝑙𝑆𝑆𝑎𝑎 + 𝑙𝑙𝑙𝑙𝑆𝑆𝑏𝑏 

 

𝑝𝑝 =
𝑆𝑆𝑎𝑎

𝑆𝑆𝑏𝑏
𝑞𝑞 − 𝑆𝑆𝑏𝑏 + 𝑆𝑆𝑎𝑎

 

If we set 𝑆𝑆𝑎𝑎
𝑆𝑆𝑏𝑏

= 𝑤𝑤, we can write: 

 
 

𝑝𝑝 = 𝑤𝑤
1
𝑞𝑞−1+𝑤𝑤

= 𝑞𝑞 𝑤𝑤
1−𝑞𝑞+𝑤𝑤𝑤𝑤

                                                   [E.3] 

 
Here p is always higher than q for any 0<q<1. Using the formula [E.3] – which 
links real-world probabilities p to the “pseudo probabilities” q – it is possible to 
measure the difference between p and q depending on agents’ risk aversion, using 
the case of the pricing of a simple call option in Box 1. 
  
In Box 1 we have determined the price of a call option, taking the case of a 
binomial model for one period and applying the no-arbitrage pricing principle 
(i.e. risk-neutrality). We obtained both the price of the call (equal to 2.29, from 
equation A.10) and the risk-neutral probabilities, equal to q=0.63 and 1-q= 0.37 
(equation A.6 bis). 
 
Now, removing the risk-neutrality hypothesis and assuming that the 
representative agent has a logarithmic utility function, we can easily move from 
risk-neutral probabilities to real-world probabilities. Using [E.3] for a risk-averse 
agent, given the risk-neutral probability q=0.63 and the underlying process for 
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stock price described by the binomial model Sa=14 and Sb=6 described in Box 1, 
one obtains that the real-world probability is equal to p=0.80. The distortion in 
the extraction of the probabilities under the risk-neutrality hypothesis is 
therefore highly significant and is graphically represented in Figure 1. 
 
Figure 1 – Real-world probabilities and risk-neutral probabilities in 2 different 
states of the world with risk-averse agents with a logarithmic utility function 

 

 

 

Hence, from the above discussion, it should be clear that only real-world probabilities can 
give meaningful measures of the likelihood that the value of a structured product at future 
dates will be higher or lower than a given threshold, because these probabilities are based on 
the plausible assumption that investors are risk-averse. 

However, this introduces a significant complication in the practical computation of 
probability scenarios, because one needs to estimate the equity premium. This has been the 
subject of a huge strand of literature, which would be impossible to fully survey here. We just 
recall that there might be at least two options, one based on historical data and another 
based on a specific model of equilibrium expected returns (such as the CAPM and its 
subsequent modifications). The literature on equity premium estimates based on historical 
data starts with the original work of Siegel (1994) and more recent evidence have been 
provided, for example, by Fama and French (2001) and Dimson et al. (2003). All of these 
works show a significant variation of equity premium estimates through time and across 
countries. On the other hand, the evidence on the performance of CAPM (and its variation 
such as the Fama-French three factor model) tend to show unstable or mixed results (see 
Fama and French 2003, Ang and Chen 2003, Campbell and Vuolteenhao 2004, Hou et al. 
2011 and Cochrane 2011). 

In a recent paper, Ross (2014) develops a framework to tackle the issue of non-arbitrary 
estimates of real-world probabilities. In particular, Ross develops a method to jointly 
estimate the risk premium and the real-world probabilities from market prices (the so-called 
“recovery theorem”). In principle, as previously illustrated, a given risk-neutral probability 
can be compatible with a potentially infinite set of combinations of risk premium and real-
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world probability (because risk-neutral probability is the product of risk premium and real-
world probability). However, Ross shows that, under certain (non-parametric) technical 
assumptions on the stochastic processes and given a perfect knowledge on “state prices” (i.e. 
forward market prices conditional any possible future state of the world), it is possible to 
disentangle jointly the risk premium and the real-world probability from market prices. 
Hence, the “recovery theorem” would make real-world probabilities non-arbitrary, since they 
would be estimated from market prices only, without any assumption on the risk premium. 
However, the key drawback for a practical implementation of the recovery theorem, as noted 
by the same Ross, is that it requires the knowledge of the price of contingent forward 
contracts, i.e. the prices at future dates conditional on being in any other state of world.  
Even if we did have such set of information, there would be still scope for different 
implementation of the recovery theorem, so that it could be possible to come up with 
different real-world probabilities for the same product. 

In summary, probability scenarios, if correctly based on real world-probabilities, are 
inevitably arbitrary or non-unique, since they rely on a specific model or dataset to estimate 
the equity premium. Thus, it is highly likely that the same derivative will have different 
probability scenarios, depending on the intermediary that is selling it. 

In the conclusions we will discuss in more details the potential regulatory problems that 
would still arise even if probability scenarios were correctly based on real-world 
probabilities. 

3. Interest-rate derivatives  

Risk-neutral pricing may apply to interest-rate derivatives (IRD) as well, though there are 
some important technical and economic differences with respect to equity derivatives that it 
is worth discussing. 

In fact, IRD pricing is conceptually different from that of equity derivatives, since it requires 
explicit assumptions on the risk preference of market participants, while the pricing of equity 
derivatives is a “subordinated pricing”, meaning that it only depends on the price of the 
underlying and does not require any assumption on investors’ risk tolerance.  

The basic reason for this is that IRD pricing depends on the stochastic process to model the 
so-called instantaneous spot rate, but the spot rate is not observable on the market. 
Nonetheless, using a no-arbitrage argument, and assuming a given risk premium, it is still 
possible to come up with a single price for any IRD. Moreover, differently form equity 
derivatives, in the IRD framework the assumption of a zero risk premium is underpinned by 
a specific economic theory on the term structure of interest rates (the “pure expectations 
theory”, whereby current forward rates are assumed to be unbiased predictors of future 
rate), while in the equity derivatives setting risk-neutrality is simply a mathematical 
transformation supported by the no-arbitrage argument with no economic interpretation. 
However, assuming the pure expectations theory could be in any case arbitrary, since there 
are other alternative models on the term structure of interest rates, such as those that 
assume a liquidity premium, a preferred habitat or segmented markets, which imply positive 
or negative risk premia. Moreover, most of the empirical research on the US market tends to 
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reject the pure expectations theory (see Fama and Bliss 1987, Campbell and Shiller 1991, 
Cochrane and Piazzesi 2005). 

In Box 5 we formalize the above discussion using material from standard textbooks of 
stochastic calculus.  

Box 5 – The risk premium and the arbitrage argument for pricing of 
IRD 
 

Let Y(t) be the price in t of a generic IRD (or more generally, of any interest rate 
sensitive contract, which could be a floating rate note or zero-coupon bond) and 
r(t) the instantaneous spot rate. The spot rate is modeled with a specific 
stochastic process and is basically the only source of risk in the pricing of IRD. 
We also assume that all agents agree on the following stochastic process for r: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑓𝑓(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑟𝑟𝑡𝑡 , 𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡)  

where the drift 𝑓𝑓(𝑟𝑟𝑡𝑡 , 𝑡𝑡) and diffusion process 𝑔𝑔2(𝑟𝑟𝑡𝑡, 𝑡𝑡) need to be specified and 
𝑍𝑍(𝑡𝑡) is a Wiener process with unit variance. In this setting the Y(t) will be a 
function of r and t: 

𝑌𝑌(𝑡𝑡) = 𝑌𝑌(𝑟𝑟𝑡𝑡, 𝑡𝑡)  

with a similar stochastic process: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑎𝑎(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑏𝑏(𝑟𝑟𝑡𝑡 , 𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡)  

that we can rewrite as: 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑌𝑌(𝑡𝑡)

= 𝑎𝑎′(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑏𝑏′(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡)                          (F.1) 

where: 

𝑎𝑎′(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 𝑎𝑎(𝑟𝑟𝑡𝑡,𝑡𝑡)
𝑌𝑌(𝑡𝑡)

, 𝑏𝑏′(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 𝑏𝑏(𝑟𝑟𝑡𝑡,𝑡𝑡)
𝑌𝑌(𝑡𝑡)

. 

The expected value of (F.1) is: 

𝐸𝐸𝑡𝑡 �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑌𝑌(𝑡𝑡)

� = 𝑎𝑎′(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑑𝑑  

so that: 
𝑎𝑎′(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 𝑬𝑬𝑡𝑡[𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑌𝑌(𝑡𝑡)]

𝑑𝑑𝑑𝑑
; 

and: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑌𝑌(𝑡𝑡)

� =  𝑏𝑏′2(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡[𝑑𝑑𝑑𝑑(𝑡𝑡)] = 𝑏𝑏′2(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑑𝑑𝑑𝑑  

𝑏𝑏′2(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡[𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑌𝑌(𝑡𝑡)]
𝑑𝑑𝑑𝑑

. 

Hence a’ e b’ are the expected value and variance of the instantaneous return of 
the IRD, and the price per unit of risk is: 
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𝜋𝜋𝑌𝑌 = 𝑎𝑎′−𝑟𝑟
𝑏𝑏′

. 

Suppose now we have a portfolio of one unit of and IRD with price Y1(t) and α 
unit of an IRD with price Y2(t). The value W(t) of the portfolio is: 

𝑊𝑊(𝑡𝑡) = 𝑌𝑌1(𝑡𝑡) + 𝛼𝛼𝑌𝑌2(𝑡𝑡)  

and its stochastic process is: 

𝑑𝑑𝑑𝑑 = (𝑎𝑎1 + 𝛼𝛼𝑎𝑎2)𝑑𝑑𝑑𝑑 + (𝑏𝑏1 + 𝛼𝛼𝑏𝑏2)𝑑𝑑𝑑𝑑  

where 𝑎𝑎𝑘𝑘(𝑟𝑟𝑡𝑡, 𝑡𝑡) and  𝑏𝑏𝑘𝑘(𝑟𝑟𝑡𝑡, 𝑡𝑡)(𝑘𝑘 = 1,2) are the coefficient for Yk. For the portfolio 
share: 

𝛼𝛼∗ = −𝑏𝑏1
𝑏𝑏2

  

the value of W is: 
𝑊𝑊∗ = 𝑌𝑌1 + 𝛼𝛼∗𝑌𝑌2, 

and the dynamic is: 
𝑑𝑑𝑊𝑊∗ = (𝑎𝑎1 + 𝛼𝛼∗𝑎𝑎2)𝑑𝑑𝑑𝑑.                                    (F.2) 

Hence such portfolio is instantaneously risk-less. In order to avoid arbitrages, the 
change 𝑑𝑑𝑊𝑊∗(𝑡𝑡) in dt has to be equal to the spot rate: 

𝑑𝑑𝑊𝑊∗(𝑡𝑡) = 𝑊𝑊∗(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑.                                 (F.3) 

From (F.2) and (F.3) we get: 

𝑎𝑎1′ −𝑟𝑟
𝑏𝑏1′

= 𝑎𝑎2′ −𝑟𝑟
𝑏𝑏2′

 .                                                 (F.4) 

Since the two IRD have been arbitrarily chosen, equation (F.4) implies that 
(𝑎𝑎𝑘𝑘′ − 𝑟𝑟)/𝑏𝑏𝑘𝑘′  has to be same for all IRD, in order to avoid risk-less arbitrages. 
Hence, the function: 

𝑞𝑞(𝑟𝑟𝑡𝑡 , 𝑡𝑡) = 𝑎𝑎′(𝑟𝑟𝑡𝑡,𝑡𝑡)−𝑟𝑟(𝑡𝑡)
𝑏𝑏′(𝑟𝑟𝑡𝑡,𝑡𝑡)

                                         (F.5) 

defines the characteristic function of the market in terms of the price required by 
market participants per unit of risk, i.e. the risk premium or “term premium”, 
and it depends on r(t) and t only. The key point here is that 𝑎𝑎′(𝑟𝑟𝑡𝑡, 𝑡𝑡) is not 
necessarily higher than r(t), so that the term premium depends on investors’ 
preferences in terms of inter-temporal wealth allocation. Since r(t) is not a 
quoted rate, the term premium cannot be estimated on market data and the 
function 𝑞𝑞(𝑟𝑟𝑡𝑡, 𝑡𝑡) is then an exogenous element to the pricing model that needs to 
be specified, making some explicit assumptions on investors’ preferences. 

Once q has been defined, (F.5) can be rewritten as: 

𝑎𝑎 − 𝑞𝑞𝑞𝑞 = 𝑟𝑟𝑟𝑟  

and substituting the functions for a and b, we have: 
1
2
𝑔𝑔2 𝜕𝜕

2𝑌𝑌
𝜕𝜕𝑟𝑟2

+ (𝑓𝑓 − 𝑞𝑞𝑞𝑞) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑟𝑟𝑟𝑟.                             (F.6) 
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(F.6) is a partial differential equation that represents the general pricing model of 
IRD. In order to solve (F.6) we need to specify the boundary conditions given by 
the specific type of IRD to be valued. The most simple valuation case is an IRD 
with a given payoff at maturity so that: 

𝑌𝑌(𝑇𝑇) = 𝐹𝐹(𝑟𝑟𝑇𝑇)                                                       (F.7) 

where the price: 
𝑌𝑌(𝑡𝑡) = 𝑉𝑉[𝑡𝑡;𝐹𝐹(𝑟𝑟𝑇𝑇)]  

 

will be given from the solution to the general equation (F.6) under the condition 
that the value at maturity is given by (F.7). If the IRD pays no coupons, it can be 
shown that the solution to equation (F.6) under the constrain (F.7) has the 
following representation: 

𝑌𝑌(𝑡𝑡) = 𝑉𝑉[𝑡𝑡;𝑌𝑌(𝑇𝑇)] = 𝑬𝑬𝑡𝑡
𝑄𝑄 �𝑒𝑒−∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑑𝑑𝑇𝑇

𝑟𝑟 𝑌𝑌(𝑇𝑇)�                            (F.8) 

where 𝐄𝐄t
Q is the expected value using the change in probability measure given by 

the following change in the drift in the spot rate: 

𝑓𝑓(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 𝑓𝑓�𝑟𝑟𝑡𝑡,𝑡𝑡� − 𝑞𝑞(𝑟𝑟𝑡𝑡, 𝑡𝑡)𝑔𝑔(𝑟𝑟𝑡𝑡, 𝑡𝑡)  

 

Similarly to the pricing of equity derivatives, also in this setting the new 
probability measure Q can be interpreted as a risk-adjusted measure, since it 
takes into account the risk premium q. Note that here we use the term “risk-
adjusted” and not “risk-neutral” simply because the risk premium q could be zero 
or negative, so that it has a different economic interpretation from the equity 
premium, which should always be positive. The other key difference from equity 
derivatives is that here a specific assumption on the risk premium is need in 
order to define Q, while in equity derivatives there is no need to define the risk 
premium to change the drift of the process.  

Under the new probability measure Q, the expected value of any IRD over the 
period dt is equal to the spot rate: 

𝑬𝑬𝑡𝑡
𝑄𝑄[𝑑𝑑𝑑𝑑(𝑡𝑡)]
𝑌𝑌(𝑡𝑡)𝑑𝑑𝑑𝑑

= 𝑟𝑟(𝑡𝑡)  

It can be shown that the assumption 𝑞𝑞(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 0 is equivalent to assuming the 
pure expectations hypothesis, whereby forward rates in t 𝑖𝑖(𝑡𝑡,𝑇𝑇, 𝑠𝑠) are unbiased 
predictors of future rates 𝑖𝑖(𝑇𝑇, 𝑠𝑠). This means that we are assuming that economic 
agents do not require a compensation against the risk of unpredictable changes in 
future rates. Of course, under this hypothesis we have: 

𝑓𝑓(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 𝑓𝑓�𝑟𝑟𝑡𝑡,𝑡𝑡�  

so that the drift remains unchanged, and the risk-adjusted measure Q would be 
equal to the real-world measure P: 
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𝑌𝑌(𝑡𝑡) = 𝑬𝑬𝑡𝑡 �𝑒𝑒−∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑑𝑑𝑇𝑇
𝑟𝑟 𝑌𝑌(𝑇𝑇)�                                     (F.9) 

 
This is however a quite special case. Any other theories on the term structure of 
interest rates would imply positive or negative risk premia, so that risk-adjusted 
probabilities will be different from real-world probabilities.  

In order to clarify why the argument that risk-neutral probabilities are misleading for risk 
management is valid for IRD as well, we apply the theoretical framework described in the 
previous Box to a specific stochastic model for the spot rate developed by Cox, Ingersoll and 
Ross (1985) (CIR model). 

In the CIR model f and g have the following specification:  

𝑓𝑓(𝑟𝑟𝑡𝑡 , 𝑡𝑡) = 𝛼𝛼(𝛾𝛾 − 𝑟𝑟𝑡𝑡)   𝛼𝛼, 𝛾𝛾 > 0;                         (3) 

𝑔𝑔(𝑟𝑟𝑡𝑡, 𝑡𝑡) = 𝜌𝜌�𝑟𝑟𝑡𝑡               ρ>0.                        (4) 

where the drift defines a mean-reverting process and the diffusion process is proportional to 
r(t), given the empirical evidence that volatility is increasing in the level of interest rates. 
Hence, the spot rate has the following stochastic process:  

 

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝛼𝛼(𝛾𝛾 − 𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜌𝜌�𝑟𝑟𝑡𝑡𝑑𝑑𝑍𝑍𝑡𝑡.            (5) 

On the base of the mathematical arguments discussed in Box 5, it can be shown that for 
pricing purposes it is possible to use a risk-adjusted version of (5) and Cox, Ingersoll and 
Ross (1985) show that, from a general equilibrium model, the parameterization of the risk 
premium is the following: 

𝑞𝑞(𝑟𝑟𝑡𝑡 , 𝑡𝑡) = −𝜋𝜋�𝑟𝑟𝑡𝑡
𝜌𝜌

                                              (6) 

where 𝜋𝜋 is an arbitrary real number. Hence, the risk-adjusted version of (5) is: 

𝑓𝑓 = 𝑓𝑓 − 𝑞𝑞𝑞𝑞 = 𝛼𝛼(𝛾𝛾 − 𝑟𝑟𝑡𝑡) + 𝜋𝜋𝑟𝑟𝑡𝑡.                                 (7) 

If we define: 

𝛼𝛼� = 𝛼𝛼 − 𝜋𝜋,   𝛾𝛾� = 𝛼𝛼
𝛼𝛼−𝛾𝛾

                                     (8) 

(7) can be re-written as: 

𝑓𝑓 = 𝛼𝛼�(𝛾𝛾� − 𝑟𝑟𝑡𝑡) 

 

The general valuation equation in Box 5 becomes: 

 

1
2
𝜌𝜌2𝑟𝑟 𝜕𝜕

2𝑌𝑌
𝜕𝜕2𝑌𝑌

+ [𝛼𝛼(𝛾𝛾 − 𝑟𝑟) + 𝜋𝜋𝜋𝜋] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑟𝑟𝑟𝑟.   (9) 
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If we set 𝑌𝑌(𝑡𝑡 + 𝜏𝜏) = 1 we can get a closed-hand formula for the term structure of zero-coupon 
discount rates: 

𝑣𝑣(𝑡𝑡, 𝑡𝑡 + 𝜏𝜏) = 𝐴𝐴(𝜏𝜏)𝑒𝑒−𝑟𝑟(𝑡𝑡)𝐵𝐵(𝜏𝜏)          (10) 

 

where A and e B are deterministic functions with the following form: 

𝐴𝐴(𝜏𝜏) = � 2𝑑𝑑𝑒𝑒(𝛼𝛼−𝜋𝜋+𝑑𝑑)𝜏𝜏/2

(𝛼𝛼−𝜋𝜋+𝑑𝑑)�𝑒𝑒𝑑𝑑𝑑𝑑−1�+2𝑑𝑑
�
𝑣𝑣
            (11) 

𝐵𝐵(𝜏𝜏) = 2(𝑒𝑒𝑑𝑑𝑑𝑑−1)
(𝛼𝛼−𝜋𝜋+𝑑𝑑)�𝑒𝑒𝑑𝑑𝑑𝑑−1�+2𝑑𝑑

         (12) 

where: 
𝑑𝑑 = �(𝛼𝛼 − 𝜋𝜋)2 + 2𝜌𝜌2       (13) 

𝑣𝑣 = 2 𝛼𝛼𝛼𝛼
𝜌𝜌2

      (14) 

Hence the pricing formula for 𝑣𝑣(𝑡𝑡, 𝑡𝑡 + 𝜏𝜏) given by equations (11)-(14) depends on all of four 
parameters 𝛼𝛼, 𝛾𝛾,𝜌𝜌 e 𝜋𝜋 that characterize the stochastic process for the spot rate, though some 
are aggregated in the form 𝛼𝛼 − 𝜋𝜋 and 𝛼𝛼𝛼𝛼. If we term them as 𝛼𝛼� e 𝛾𝛾� we may re-write A and B:  

𝐴𝐴(𝜏𝜏) = �
2𝑑𝑑𝑒𝑒(𝛼𝛼�+𝑑𝑑)𝜏𝜏/2

(𝛼𝛼� + 𝑑𝑑)(𝑒𝑒𝑑𝑑𝑑𝑑 − 1) + 2𝑑𝑑
�
𝑣𝑣

 

𝐵𝐵(𝜏𝜏) =
2(𝑒𝑒𝑑𝑑𝑑𝑑 − 1)

(𝛼𝛼� + 𝑑𝑑)(𝑒𝑒𝑑𝑑𝑑𝑑 − 1) + 2𝑑𝑑
 

 

where d e v are still given by equations (13) and (14). 

For pricing purposes, it may not necessary to make explicit assumptions on q, because there 
are methods to estimate A and B using market quotes (so-called “calibration techniques”) 
without being necessarily explicit on the value of 𝜋𝜋 (and hence of q). This means, differently 
from equity derivatives, that the pricing process is not explicitly assuming risk-neutral 
agents (i.e. agent that demand a zero term premium). 

On the other hand, the practical implementation of the CIR model to simulate future values 
of any IRD requires inevitably and empirical estimate of all the parameters 𝛼𝛼, 𝛾𝛾,𝜌𝜌 and 𝜋𝜋 and 
hence a specific assumption on the risk premium q. 

In summary, from the above discussion it should be clear that, although the economics 
underlying the pricing of IRD is somewhat different from that of equity derivatives, 
probability scenarios on IRD, exactly like those on equity derivatives, require an explicit 
assumption on the risk premium. If the risk premium is set to zero, this means that the 
probability scenarios are based on the assumption that current forward rates are unbiased 
predictors of future rates. This implies that investors require no compensation for the risk of 
unpredicted changes in future rates when buying long-terms bonds.  
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Moreover, like in the case of equity derivatives, there can be different econometric and 
calibration techniques to estimate the parameters in A and B8, so that the same IRD can have 
different plausible probability scenarios.     

4. Conclusions 

This work has reviewed the economics behind the mathematical finance literature on the 
pricing of equity and interest-rate derivatives in order to clarify that the probabilities used in 
the pricing process assume risk-neutral agents (though the concept of risk neutrality for 
equity derivatives is somewhat different from interest rates derivatives), and therefore these 
probabilities are of limited use for forecasting the value of derivatives at future dates: they do 
not convey the “real” probabilities of future events and could be potentially misleading if 
retail investors do not fully understand the implications of the assumption of risk-neutrality. 
To this end, it may be more accurate to use probabilities based on an explicit assumption on 
the risk premium (so-called real-world probabilities). 

Hence, we argue that information given to retail investors on the probability that at some 
future dates the value of a derivative will be higher or lower than given thresholds (so-called 
“probability scenarios”) would optimally explicitly reference real-world probabilities.  
 
However, the proposed approach also has significant limitations. The use of real-world 
probabilities may entail significant problems. 

First, real-world probabilities imply that the same product can have different probability 
scenarios, because of different plausible approaches to estimate the risk premium. Second, it 
may be difficult to have retail investors fully understand the hypothesis and caveat behind 
such approaches, in order to avoid that they blindly rely on them; in fact, retail investors 
should realize that, although scenarios are based on real-world probabilities, these are not 
“true” probabilities, in the sense of “frequentist probability”, but just estimates that are 
highly model-dependent, and that, for this reason, probability scenarios should not be the 
sole driver of the decision process. Finally, intermediaries may use such models in order to 
make products look particularly attractive, while identifying such tailor-made utilization of 
models is necessarily very difficult, especially for non-technical retail investors.  
 
For these reasons, we argue that, though probability scenarios are an appealing tool to foster 
investor protection, their application in practice would need to be approached with caution 
by investors and regulators alike.  
  

8  See Gourieroux and Monfort (2007). 
                                                           



ESMA Working Paper No. 3, 2014  28 

BIBLIOGRAPHY 

Ang, A. and J. S. Chen (2003), CAPM Over the Long-Run: 1926-2001, mimeo. 

Baxter, M. and A. Rennie (1996), Financial Calculus. An Introduction to Derivatives 
Pricing, Cambridge University Press. 

Black, F. and M. Scholes (1973), The pricing of options and corporate liabilities, Journal of 
Political Economy. 

Bliss, R. and N. Panigirtzoglou (2004), Option implied risk-aversion estimates, Journal of 
Finance. 

Brandt, M. and D. Chapman (2002), Comparing Multifactor Models of the Term Structure, 
Working Paper, Wharton School.  

Brown, S. J. and P. H. Dybvig (1986), The empirical implications of the Cox, Ingersoll, Ross 
theory of the term structure of interest rates, Journal of Finance. 

Campbell, J. Y. and R. J. Shiller (1991), Yield spreads and interest rate movements: a bird's 
eye view, Review of Economic Studies. 

Campbell, J. Y. and T. Vuolteenaho (2004), Bad Beta, Good Beta, American Economic 
Review. 

Cochrane, J. H. and M. Piazzesi (2005), Bond Risk Premia, American Economic Review. 

Cochrane, J. (2011), Presidential Address: Discount Rates, Journal of Finance. 

Cox, J. C., Ross S. A. and M. Rubinstein (1979), Option pricing: a simplified approach, 
Journal of Financial Economics. 

Cox, J. C., J. E. Ingersoll and S. A. Ross (1985), A Theory of the Term Structure of Interest 
Rates, Econometrica. 

Dimson, E., P. Marsh and M. Staunton (2003), Global Evidence on the Equity Risk 
Premium, Journal of Applied Corporate Finance. 

Fama E. and R. Bliss (1987), The information in long-maturity forward rates, American 
Economic Review.  

Fama, E. F. and K. R. French (2002), The Equity Premium, Journal of Finance. 

Fama, E. F. and K. R. French (2003), The Capital Asset Pricing Model: Theory and 
Evidence, CRSP Working Paper. 

Fama, E. F. and K. R. French (2006), The Value Premium and the CAPM, Journal of 
Finance. 

Gisiger, N. (2010), Risk-neutral Probabilities Explained, working paper. 

Gourieroux, C. and A. Monfort (2007), Estimation of the Historical Mean-Reverting 
Parameter in the CIR Model, mimeo 

Grundy, B. D. (1991), Option prices and the underlying asset’s return distribution, Journal 
of Finance. 

Harrison, J. M. and D. M. Kreps (1979), Martingales and Arbitrage in Multiperiod 
Securities Markets, Journal of Economic Theory.  

http://en.wikipedia.org/wiki/Econometrica


ESMA Working Paper No. 3, 2014  29 

Harrison, J. M. and R. Pliska (1981), Martingales and stochastic integrals in the theory of 
continuous trading, Stochastic Processes. 

Hou, K., G. A. Karolyi and B. Kho (2011), What Factors Drive Global Stock Returns?, Review 
of Financial Studies. 

Humphreys, V. and J. Noss (2012), Estimating probability distributions of future asset 
prices: empirical transformations from option-implied risk-neutral to real-world density 
functions, Bank of England, Working Paper. 

Liu, X., M. Shackleton, S. Taylor and X. Xu (2007), Closed-form transformations from risk-
neutral to real-world distributions, Journal of Banking and Finance. 

Ross, S. (2014), The Recovery Theorem, Journal of Finance, forthcoming. 

Shreve, E. S. (2004), Stochastic Calculus for Finance, Springer. 

Siegel, J. (1994), Stocks for the Long Run, Irwin Professional Publishing. 

 

     



ESMA Working Paper No. 3, 2014  30 

 

 
 


	Shreve, E. S. (2004), Stochastic Calculus for Finance, Springer.

